Abstract

BackgroundNeuroendocrine tumors (NETs) early diagnosis is a clinical challenge that require a deep understanding of molecular and genetic features of this heterogeneous group of neoplasms. However, few biomarkers exist to aid diagnosis and to predict prognosis and treatment response. In the oncological field, tumor-educated platelets (TEPs) have been implicated as central players in the systemic and local responses to tumor growth, thereby altering tumor specific RNA profile. Although TEPs have been found to be enriched in RNAs, few studies have investigated the potential of a type of RNA, circular RNAs (circRNA), as platelet-derived biomarkers for cancer. In this proof-of-concept study, we aim to demonstrate whether the circRNAs signature of tumor educated platelets can be used as a liquid biopsy biomarker for the detection of gastroenteropancreatic (GEP)-NETs and the prediction of the early response to treatment.MethodsWe performed a 24-months, prospective proof-of-concept study in men and women with histologically proven well-differentiated G1-G2 GEP-NET, aged 18–80 years, naïve to treatment. We performed a RNAseq analysis of circRNAs obtained from TEPs samples of 10 GEP-NETs patients at baseline and after 3 months from therapy (somatostatin analogs or surgery) and from 5 patients affected by non-malignant endocrinological diseases enrolled as a control group.ResultsStatistical analysis based on p < 0.05 resulted in the identification of 252 circRNAs differentially expressed between GEP-NET and controls of which 109 were up-regulated and 143 were down-regulated in NET patients. Further analysis based on an FDR value ≤ 0.05 resulted in the selection of 5 circRNAs all highly significant downregulated. The same analysis on GEP-NETs at baseline and after therapy in 5 patients revealed an average of 4983 remarkably differentially expressed circRNAs between follow-up and baseline samples of which 2648 up-regulated and 2334 down-regulated, respectively. Applying p ≤ 0.05 and FDR ≤ 0.05 filters, only 3/5 comparisons gave statistically significant results.ConclusionsOur findings identified for the first time a circRNAs signature from TEPs as potential diagnostic and predictive biomarkers for GEP-NETs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.