Abstract
Poly(methyl methacrylate) (PMMA) terminated with elemental blocks containing polyhedral oligomeric silsesquioxane (POSS), hereafter referred to as PPMP, was synthesized by living anionic polymerization. Combining modern interfacial-sensitive spectroscopy with traditional contact angle measurements, static and dynamic structures at the surface of PPMP films in water were examined. The surface of the well-annealed PPMP films, where the POSS end groups were preferentially segregated, was flat at the sub-nanometer level. Once the PPMP film was immersed in water, the surface was reorganized, and the rate was much slower for PPMP than for the conventional PMMA. This implies that the POSS units hindered the interfacial dynamics of the polymer segments. Then, platelet-adhesion tests were performed on the PPMP films. The number of platelets adhered to the PPMP film was dependent on the pre-immersion time in phosphate-buffered saline before the platelet seeding, whereas that of the reference PMMA film was unaffected by the pre-immersion time. These results could be explained in terms of the aggregation states of water at the interface. The interfacial dynamics of the segment of poly(methyl methacrylate) (PMMA) terminated with elemental blocks containing polyhedral oligomeric silsesquioxane (POSS), namely PPMP (PMAPOSS-b-PMMA-b-PMAPOSS), was much slower than that of the conventional PMMA. The number of platelets adhered to the PPMP film was dependent on the pre-immersion time in phosphate-buffered saline before the platelet seeding, and these results could be explained in terms of the aggregation states of water at the interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.