Abstract
We examined the hemodynamic and tubular transport mechanisms by which platelet-activating factor (PAF) regulates salt and water excretion. In anesthetized, renally denervated male Wistar rats, with raised systemic blood pressure and renal arterial blood pressure maintained at normal levels, intrarenal PAF infusion at 2.5 ng. min(-1) x kg(-1) resulted in a small fall in systemic blood pressure (no change in renal arterial blood pressure) and an increase in renal blood flow and urinary water, sodium, and potassium excretion rates. The PAF-induced changes in cardiovascular and renal hemodynamic function were abolished and renal excretory function greatly attenuated by treating rats with a nitric oxide synthase inhibitor. To determine whether a tubular site of action was involved in the natriuretic effect of PAF, cortical proximal tubules were enzymatically dissociated from male Wistar rat kidneys, and oxygen consumption rates (Qo(2)) were used as an integrated index of transcellular sodium transport. PAF at 1 nM maximally inhibited Qo(2) in both untreated and nystatin-stimulated (sodium entry into renal cell is not rate limiting) proximal tubules by approximately 20%. Blockade of PAF receptors or Na(+)-K(+)-ATPase pump activity with BN-52021 or ouabain, respectively, abolished the effect of PAF on nystatin-stimulated proximal tubule Qo(2). Inhibition of nitric oxide synthase or guanylate cyclase systems did not alter PAF-mediated inhibition of nystatin-stimulated proximal tubule Qo(2), whereas phospholipase A(2) or cytochrome-P-450 monooxygenase inhibition resulted in a 40-60% reduction. These findings suggest that stimulation of PAF receptors on the proximal tubule decreases transcellular sodium transport by activating phospholipase A(2) and the cytochrome-P-450 monooxygenase pathways that lead to the inhibition of an ouabain-sensitive component of the basolateral Na(+)-K(+)-ATPase pump. Thus PAF can activate both an arachidonate pathway-mediated suppression of proximal tubule sodium transport and a nitric oxide pathway-mediated dilatory action on renal hemodynamics that likely contributes to the natriuresis and diuresis observed in vivo.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.