Abstract

PurposeCell membrane-camouflaged nanoparticles (NPs) are drawing increasing attention because their surfaces acquire some characteristics of the cell membranes, making them a unique class of biomimetic materials for diverse applications. Modification of cell membrane or combination of different types of membranes can enhance their functionality.MethodsWe prepared platelet and tumor cell membrane camouflaged β-mangostin-loaded NPs, which were synthesized with platelet–C6 hybrid biomimetic coating, poly(lactic-co-glycolic acid), and β-mangostin (β-PCNPs). Then, we evaluated their targeting ability and anticancer activity against glioma in vitro and in vivo.ResultsBiomimetic coating enhanced active drug targeting and immune escape properties of nanocarrier in C6 and THP-1 cells, respectively, which improved their cytotoxicity. β-PCNPs were characterized to study the inherent properties of both source cells. Compared with bare β-NPs, β-PCNPs exhibited high tumor-targeting capability and induced apoptosis of C6 cells in vitro. Similarly, intravenous administration of drug through β-PCNPs resulted in enhanced tumor-targeting and exhibited excellent rate of inhibition of glioma tumor growth in mice. Moreover, the blood circulation time of drug in mice in the β-PCNP group was markedly prolonged and these mice exhibited better outcome than those in the β-NP group.ConclusionThese results provide a new strategy of utilizing PCNPs as carriers for drug delivery, which improves the targeting efficiency and therapeutic efficacy of chemotherapeutic agents for glioma therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call