Abstract
BackgroundPlatelets have been proven to be a useful cellular model to study some neuropathologies, due to the overlapping biological features between neurons and platelets as granule secreting cells. Altered platelet dense granule morphology was previously reported in three autism spectrum disorder (ASD) patients with chromosomal translocations that disrupted ASD candidate genes NBEA, SCAMP5, and AMYSIN, but a systematic analysis of platelet function in ASD is lacking in contrast to numerous reports of elevated serotonin levels in platelets and blood as potential biomarker for ASD.MethodsWe explored platelet count, size, epinephrine-induced activation, and dense granule ATP secretion in a cohort of 159 ASD patients, their 289 first-degree relatives (103 unaffected siblings, 99 mothers, and 87 fathers), 45 adult controls, and 65 pediatric controls. For each of the responses separately, a linear mixed model with gender as a covariate was used to compare the level between groups. We next investigated the correlation between platelet function outcomes and severity of impairments in social behavior (social responsiveness score (SRS)).ResultsThe average platelet count was increased in ASD patients and siblings vs. controls (ASD 320.3 × 109/L, p = 0.003; siblings 332.0 × 109/L, p < 0.001; controls 283.0 × 109/L). The maximal platelet secretion-dependent aggregation response to epinephrine was not significantly lower for ASD patients. However, secondary wave responses following stimulation with epinephrine were more frequently delayed or absent compared to controls (ASD 52 %, siblings 45 %, parents 53 %, controls 22 %, p = 0.002). In addition, stimulated release of ATP from dense granules was reduced in ASD patients, siblings, and parents vs. controls following activation of platelets with either collagen (ASD 1.54 μM, p = 0.001; siblings 1.51 μM, p < 0.001; parents 1.67 μM, p = 0.021; controls 2.03 μM) or ADP (ASD 0.96 μM, p = 0.003; siblings 1.00 μM, p = 0.012; parents 1.17 μM, p = 0.21; controls 1.40 μM). Plasma serotonin levels were increased for ASD patients (n = 20, p = 0.005) and siblings (n = 20, p = 0.0001) vs. controls (n = 16). No significant correlations were found in the different groups between SRS scores and count, size, epinephrine aggregation, or ATP release.ConclusionsWe report increased platelet counts, decreased platelet ATP dense granule secretion, and increased serotonin plasma levels not only in ASD patients but also in their first-degree relatives. This suggests that potential genetic factors associated with platelet counts and granule secretion can be associated with, but are not fully penetrant for ASD.Electronic supplementary materialThe online version of this article (doi:10.1186/s13229-015-0051-y) contains supplementary material, which is available to authorized users.
Highlights
Platelets have been proven to be a useful cellular model to study some neuropathologies, due to the overlapping biological features between neurons and platelets as granule secreting cells
autism spectrum disorder (ASD) patients and their siblings have higher platelet counts compared to age-matched pediatric controls (Table 2)
Within the ASD family subgroups, total platelet count did not differ between genders, except for the parent sample where the mean platelet count was higher for mothers (M = 308, SD 6.4) compared to fathers (M = 290, SD 6.1, p = 0.04)
Summary
Platelets have been proven to be a useful cellular model to study some neuropathologies, due to the overlapping biological features between neurons and platelets as granule secreting cells. Gene pathway analysis studies have provided insight in the diverse nature of the genetic abnormalities, and it becomes evident that the majority of genetic defects influence a limited number of core functional mechanisms in the brain [6,7,8,9,10]. These identified networks are mainly related to the neuronal synapse and include synaptic plasticity, structure, signaling, and transcriptional regulation. Studying synaptic function in vivo and modeling the effect of single gene mutations in vitro are challenging despite the availability of non-invasive technologies to study human brain function and the development of several animal models [11,12,13]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.