Abstract
Platelets are cleared from circulation after a life span of 8–10 days. The molecular mechanisms underlying platelet senescence remain poorly characterized. Here we report that, progressive functional impairment in the platelets incubated in vitro in a plasma-free isotonic medium for up to 24 h at 37 °C is associated with release of cytochrome c from platelet mitochondria and cleavage of procaspase-9, but without evidence of caspase-3 activation. Concomitantly, there was proteolysis of survival proteins like focal adhesion kinase, Src, gelsolin, and specific cytoskeleton-associated peptides, in a manner regulated by extracellular calcium and calpain activity. Cytoskeleton played a critical role as evidenced from the association of these proteins and their degradation products, as well as procaspase-3 and the actin regulatory small GTPase, CDC42Hs, with the cytoskeleton of the stored platelets. The cytoskeletal enrichment with specific proteins was not associated with increase in the content of F-actin and was cytochalasin-resistant, thus signifying a novel mechanism of interaction of the translocating proteins with the pre-existing cytoskeleton. There was progressive exposure of phosphatidylserine on the outer leaflet of platelet membrane and specific electron microscopic changes suggestive of apoptotic lesions. Based on these observations we discuss the caspase-independent but calpain-mediated signaling events in the stored platelets resembling the features of apoptosis in the nucleated cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.