Abstract

To investigate the role of platelet-rich plasma (PRP) in inducing the M2 macrophage polarization via regulating AMPK singling pathway. The expressions of M1 marker CD11c and M2 marker CD206 in macrophages of blank control group, LPS group, LPS+PRP group, and LPS+PRP+Compound C group were detected by flow cytometry. Western blot was used to observe the effects of PRP on the expression of AMPK-mTOR signaling pathway-related proteins at different times (12 h, 18 h and 24 h) after LPS treatment. RNA interference technology was used to silence the expression of AMPK in macrophages, and the expression of TGF-β protein was subsequently examined by Western blot. LPS significantly reduced the expression of CD206 and increased the expression of CD11c (P <0.05). After the addition of PRP, the expression of CD206 was significantly increased (P <0.05), while the expression of CD11c was significantly decreased (P <0.05). Compared with LPS group, PRP treatment significantly increased the expressions of p-AMPK and p-ULK1 proteins at 12 h, 18 h and 24 h, while significantly decreased the expression of p-mTOR protein (P <0.05). After the addition of AMPK inhibitor Compound C, the expression of CD206 was significantly reduced (P <0.05) and the expression of CD11c was significantly increased compared with LPS+PRP group (P <0.05). After silencing the expression of AMPK in macrophages, the promotion effect of PRP on TGF-β was significantly reduced (P <0.05). PRP can stimulate the transformation of macrophages to M2 type via AMPK signalling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call