Abstract

The purpose of this study was to determine whether the platelet-rich plasma-agarose gel scaffold could be a bioactive scaffold capable of growth factors release for cartilage repair. Porcine chondrocytes were seeded in agarose gel and platelet-rich plasma-agarose gel. During the 28-days culture, microstructure of hydrogels and morphologies of chondrocytes seeded in the hydrogels were observed using scanning electron microscope; viability of chondrocytes in gels was examined by live/dead assay; qualitative and quantitative analysis of glycosaminoglycan, collagen and DNA were assessed by histological, immunohistochemical staining and biochemical assay; gene expression was measured by real-time polymerase chain reaction. In vitro cartilage ring models were used to evaluate the integration of the scaffolds, and the integration strength was analyzed by mechanical push-out tests. Scanning electron microscope revealed both scaffolds had highly uniform porous structure. Live/dead scaffolds showed 100% cells alive in both groups. After 28-days culture, glycosaminoglycan, collagen, DNA content and chondrocyte-related genes expression in platelet-rich plasma-agarose gel were significantly higher than pure agarose gel. Integration strength in platelet-rich plasma-agarose gel was also higher compared to pure agarose gel. Platelet-rich plasma showed a positive effect on chondrocytes proliferation, differentiation and integration between native cartilage and engineered tissue when combined with agarose gel. Our findings suggest that platelet-rich plasma-agarose gel scaffold is a promising bioactive scaffold for future cartilage tissue engineering and future clinical works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call