Abstract

PurposeOsseointegration consists of bidirectional bone formation around modified implant surfaces by contact osteogenesis and distance osteogenesis. This study tested whether contact osteogenesis on the surface of a modified titanium (Ti) implant is stimulated by cytokines in the blood.MethodsIn the first two types of experiments, sandblasted, large-grit, acid-etched Ti implants and turned Ti tubes were inserted into rabbit tibiae. To exclude the influence of distance osteogenesis, the tubes were inserted into the tibiae, and implants were placed inside the tubes. In a third type of experiment, the implants and tubes were inserted into the rabbit tibiae, and platelet-rich plasma (PRP) or recombinant human bone morphogenetic protein-2 (rhBMP-2) was applied topically. Four weeks after implantation, undecalcified specimens were prepared for histomorphometry. Bone-to-implant contact (BIC) and bone area per tissue (BA) were measured, and the data were analysed using one-way ANOVA at a significance level of 0.05.ResultsWhen the response of bone to Ti tubes with implants was compared to that without implants (first experiment), little bone formation was found inside the tubes. The mean BIC of implant specimens inside the tubes was 21.41 ± 13.81% in a second experiment that evaluated bone responses to implants with or without Ti tubes. This mean BIC value was significantly lower than that in the implant-only group (without tubes) (47.32 ± 12.09%, P = 0.030). The third experiment showed that rhBMP-2 significantly increased contact osteogenesis on the implant surface, whereas PRP had no effect (mean BIC: 66.53 ± 14.06% vs. 16.34 ± 15.98%, P = 0.004).ConclusionsPlatelet-rich plasma alone is unable to trigger contact osteogenesis on the modified titanium implant surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call