Abstract

Platelet activation mediates multiple cellular responses, including secretion of chemokines such as RANTES (CCL5), and formation of platelet microparticles (PMPs). We studied the role of PMPs in delivering RANTES and promoting monocyte recruitment. Here we show that PMPs contain substantial amounts of RANTES and deposit RANTES on activated endothelium or murine atherosclerotic carotid arteries. RANTES deposition is facilitated by flow conditions and more efficient than that conferred by PMP supernatants. Interactions of PMPs with activated endothelium in flow were mostly characterized by rolling. RANTES deposition showed a diffuse distribution pattern and was rarely colocalized with firmly adherent PMPs, substantiating that RANTES deposition occurs during transient interactions. Importantly, preperfusion with PMPs enhanced monocyte arrest on activated endothelium or atherosclerotic carotid arteries, which could be inhibited by a blocking antibody or a RANTES receptor antagonist. Blockade or deficiency of PMP-expressed adhesion receptors demonstrated differential requirement of P-selectin, glycoprotein Ib (GPIb), GPIIb/IIIa, and junctional adhesion molecule-A for PMP interactions with endothelium, PMP-dependent RANTES deposition, and subsequent monocyte arrest. Circulating PMPs may serve as a finely tuned transcellular delivery system for RANTES, triggering monocyte arrest to inflamed and atherosclerotic endothelium, introducing a novel mechanism for platelet-dependent monocyte recruitment in inflammation and atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.