Abstract

Angiogenic early outgrowth cells (EOCs) have been reported to contribute to endothelial regeneration and to limit neointima formation after vascular injury. Vascular pathologies comprise platelet activation and concomitant generation of platelet microparticles (PMPs). We hypothesized that PMPs may interact with EOCs in the context of vascular injury and modulate their regenerative potential. Using flow cytometry, confocal microscopy, and scanning electron microscopy, we demonstrated the binding of thrombin/collagen-induced PMPs to EOCs with subsequent membrane assimilation and incorporation. This interaction promoted phenotypic alterations of EOCs with increased expression of endothelial cell markers and transfer of the chemokine receptor CXCR4 to EOCs with enhanced responsiveness to its ligand CXCL12/SDF-1alpha. In addition, PMPs augmented the adhesion of EOCs to extracellular matrix components and to the injured vessel wall and accelerated cytoskeletal reorganization and migration of EOCs. PMPs induced changes in the EOC secretome toward a more proangiogenic profile and amplified the EOC-mediated induction of proliferation, migration, and capillary tube formation by mature endothelial cells. Compared with untreated EOCs, the injection of PMP-treated EOCs resulted in accelerated reendothelialization after arterial denudation injury in athymic nude mice, whereas the EOC-mediated reduction of neointima formation remained unchanged. Our data provide evidence that PMPs can boost the potential of EOCs to restore endothelial integrity after vascular injury. Major mechanisms involve the enhancement of EOC recruitment, migration, differentiation, and release of proangiogenic factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.