Abstract

To isolate a more native, platelet-interactive macromolecule (class II antigen) of Streptococcus sanguis, cultured protoplasts were used as a source. Protoplasts were optimally prepared from fresh washed cells by digestion with 80 U of mutanolysin per ml for 75 min at 37 degrees C while osmotically stabilized in 26% (wt/vol) raffinose. Osmotically stabilized forms were surrounded by a 9-nm bilaminar membrane, as shown by transmission electron microscopy. Protoplasts were cultured in chemically defined synthetic medium and osmotically stabilized by ammonium chloride. Spent culture media were harvested daily for 7 days. Each day, soluble proteins were isolated from media, preincubated with platelet-rich plasma, and tested for inhibition of platelet aggregation induced by S. sanguis cells. Products released from S. sanguis protoplasts and reactive with an anti-class II antigen immunoaffinity matrix were able to inhibit S. sanguis-induced platelet aggregation. As resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, anti-class II-reactive protoplast products included silver-stained bands of 67, 79, 115, 216, and 248 kDa. The 115-kDa protein fraction was isolated by gel filtration and ion-exchange chromatography. This form of the class II antigen contained N-formylmethionine at its amino terminus. Rhamnose constituted 18.2% of the total residual dry weight and nearly half of its carbohydrate content. Diester phosphorus constituted 1% of this fraction. After trypsinization of the protoplast products from either preparation, a 65-kDa protein fragment was recovered. This protoplast protein fragment and the S. sanguis cell-derived 65-kDa class II antigen, previously implicated in the induction of platelet aggregation, were shown to be functionally and immunologically identical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.