Abstract

Platelet-derived microvesicles (PMVs) are the most abundant microvesicles in circulation, originating from blood platelets via membrane blebbing. PMVs act as biological cargo carrying key molecules from platelets, including immunomodulatory molecules, growth factors, clotting molecules, and miRNAs that can regulate recipient cellular functions. Formation and release of PMVs play an essential role in the pathophysiology of vascular diseases such as hemostasis, inflammation, and thrombosis. Platelet activation is considered the critical event in thrombosis, and a growing number of evidence suggests that oxidative stress-mediated signaling plays a significant role in platelet activation. Ca2+ is a notable player in the generation of ROS in platelets. Reports have established that microvesicles exhibit dual nature in redox mechanisms as they possess both pro-oxidant and antioxidant machinery. However, the impact of PMVs and their ROS machinery on platelets is still a limited explored area. Here, we have demonstrated that PMVs mediate platelet activation via intracellular ROS generation. PMVs interacted with platelets and induced calcium-mediated intracellular ROS production via NADPH oxidase (NOX), leading to platelet activation. Our findings will open up new insights into the tangible relationship of PMVs with platelets and will further contribute to the therapeutic aspects of PMVs in vascular injury and tissue remodeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.