Abstract

This study investigates the role of platelet-derived microparticles for vascular smooth muscle cell (SMC) proliferation. Microparticles concentration dependently stimulated p42/p44 MAP kinase phosphorylation, c-fos induction, DNA synthesis, and proliferation of cultured bovine coronary artery SMC. The maximum mitogenic effects of microparticles were significantly higher than those of platelet-derived growth factor (PDGF)-BB. Microparticle-induced SMC mitogenesis was heat sensitive, whereas the effects of PDGF were not. In addition, neutralizing anti-PDGF antibodies prevented PDGF-induced DNA synthesis but did not inhibit the effects of microparticles. In contrast to PDGF, which potently stimulated SMC migration, microparticles had only minor migratory activity. These results demonstrate a novel mechanism of SMC mitogenesis by platelet-derived microparticles that is probably independent of PDGF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.