Abstract

Fluid shear stress (FSS) is the most common stress produced by mastication, speech, or tooth movement. However, how FSS regulates human periodontal ligament (PDL) cell proliferation and migration as well as the underlying mechanism remains unknown. FSS (6dyn/cm2) was produced in a flow chamber. Cell proliferation was tested by the 5-ethynyl-2'-deoxyuridine assay. Cell migration was tested by the wound healing assay. Gene and protein expression of platelet-derived growth factors (PDGFs) and matrix metalloproteinase (MMP)-2 were measured by reverse transcription-polymerase chain reaction and western blot analyses. We investigated the effect of 4h of 6dyn/cm2 FSS on proliferation and migration of PDL cells. FSS promoted PDL cell proliferation but inhibited migration. The gene and protein expression of PDGF receptor (PDGFR)-α and β both decreased in response to FSS. Activating and inhibiting the PDGFRs did not affect the FSS-induced increase in cell proliferation. However, activating PDGFRs with PDGF-BB, which bound both PDGFR-α and β, and PDGF-CC and DD, which had high affinities for PDGFR-α and PDGFR-β, individually rescued FSS-inhibited migration. FSS also inhibited MMP-2 gene expression, which was the most important factor for matrix turnover and migration of PDLs. PDGF-BB, CC, and DD increased the FSS-induced decline in MMP-2 expression. These results indicate that MMP-2 is regulated by FSS and contributes to the FSS-induced decrease in cell migration. Our study suggests a role for PDGFR-α and β in short-term FSS-regulated cell proliferation and migration. These results will help provide the scientific foundation for revealing the mechanisms clinical tooth movement and PDL regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call