Abstract

BackgroundIn the early phases of relapsing-remitting multiple sclerosis (RR-MS), a clear correlation between brain lesion load and clinical disability is often lacking, originating the so-called clinico-radiological paradox. Different factors may contribute to such discrepancy. In particular, synaptic plasticity may reduce the clinical expression of brain damage producing enduring enhancement of synaptic strength largely dependent on neurotrophin-induced protein synthesis. Cytokines released by the immune cells during acute inflammation can alter synaptic transmission and plasticity possibly influencing the clinical course of MS. In addition, immune cells may promote brain repair during the post-acute phases, by secreting different growth factors involved in neuronal and oligodendroglial cell survival. Platelet-derived growth factor (PDGF) is a neurotrophic factor that could be particularly involved in clinical recovery. Indeed, PDGF promotes long-term potentiation of synaptic activity in vitro and in MS and could therefore represent a key factor improving the clinical compensation of new brain lesions. The aim of the present study is to explore whether cerebrospinal fluid (CSF) PDGF concentrations at the time of diagnosis may influence the clinical course of RR-MS.MethodsAt the time of diagnosis, we measured in 100 consecutive early MS patients the CSF concentrations of PDGF, of the main pro- and anti-inflammatory cytokines, and of reliable markers of neuronal damage. Clinical and radiological parameters of disease activity were prospectively collected during follow-up.ResultsCSF PDGF levels were positively correlated with prolonged relapse-free survival. Radiological markers of disease activity, biochemical markers of neuronal damage, and clinical parameters of disease progression were instead not influenced by PDGF concentrations. Higher CSF PDGF levels were associated with an anti-inflammatory milieu within the central nervous system.ConclusionsOur results suggest that PDGF could promote a more prolonged relapse-free period during the course of RR-MS, without influencing inflammation reactivation and inflammation-driven neuronal damage and likely enhancing adaptive plasticity.

Highlights

  • In the early phases of relapsing-remitting multiple sclerosis (RR-Multiple sclerosis (MS)), a clear correlation between brain lesion load and clinical disability is often lacking, originating the so-called clinico-radiological paradox

  • Clinical characteristics and cerebrospinal fluid (CSF) Platelet-derived growth factor (PDGF) levels in the whole patient population In a group of 100 early MS patients, classified at the time of hospitalization as clinically isolated syndrome (CIS) or relapsing-remitting multiple sclerosis (RR-MS), we explored the correlation between CSF PDGF concentrations measured at the time of diagnosis and prospective disease activity

  • CSF PDGF levels and cytokines To test whether central nervous system (CNS) inflammation influences PDGF levels, we explored the correlation between CSF PDGF and the levels of the main pro- and anti-inflammatory molecules

Read more

Summary

Introduction

In the early phases of relapsing-remitting multiple sclerosis (RR-MS), a clear correlation between brain lesion load and clinical disability is often lacking, originating the so-called clinico-radiological paradox. In early phases of MS, it is often difficult to demonstrate a clear association between lesion load, site, and clinical disability contributing to the so-called clinico-radiological paradox [1]. Such discrepancies may arise from different mechanisms, including synaptic plasticity which is able to reduce the clinical expression of brain damage reestablishing the excitability of neurons deprived of their synaptic inputs. Cytokines can alter synaptic transmission [3, 4] and plasticity possibly influencing the clinical course of the disease [5, 6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call