Abstract

BackgroundTraumatic injury can lead to dysregulation of the normal clotting system, resulting in hemorrhagic and thrombotic complications. Platelet activation is robust following traumatic injury and one process of platelet activation is to release of extracellular vesicles (PEV) that carry heterogenous cargo loads and surface ligands. ObjectivesWe sought to investigate and characterize the release and function of PEVs generated following traumatic injury. MethodsPEV content and quantity in circulation following trauma in humans and mice was measured using flow cytometry, size exclusion chromatography, and nanoparticle tracking analysis. PEVs were isolated from circulation and the effects on thrombin generation, bleeding time, hemorrhage control, and thrombus formation were determined. Finally, the effect of hydroxychloroquine (HCQ) on PEV release and thrombosis were examined. ResultsHuman and murine trauma results in a significant release of PEVs into circulation compared with healthy controls. These PEVs result in abundant thrombin generation, increased platelet aggregation, decreased bleeding times, and decreased hemorrhage in uncontrolled bleeding. Conversely, PEVs contributed to enhanced venous thrombus formation and were recruited to the developing thrombus site. Interestingly, HCQ treatment resulted in decreased platelet aggregation, decreased PEV release, and reduced deep vein thrombosis burden in mice. ConclusionsThese data demonstrate that trauma results in significant release of PEVs which are both pro‐hemostatic and pro‐thrombotic. The effects of PEVs can be mitigated by treatment with HCQ, suggesting the potential use as a form of deep vein thrombosis prophylaxis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.