Abstract

AbstractThe platelet protein disulfide isomerase called ERp57 mediates platelet aggregation, but its role in thrombus formation is unknown. To determine the specific role of platelet-derived ERp57 in hemostasis and thrombosis, we generated a megakaryocyte/platelet-specific knockout. Despite normal platelet counts and platelet glycoprotein expression, mice with ERp57-deficient platelets had prolonged tail-bleeding times and thrombus occlusion times with FeCl3-induced carotid artery injury. Using a mesenteric artery thrombosis model, we found decreased incorporation of ERp57-deficient platelets into a growing thrombus. Platelets lacking ERp57 have defective activation of the αIIbβ3 integrin and platelet aggregation. The defect in aggregation was corrected by the addition of exogenous ERp57, implicating surface ERp57 in platelet aggregation. Using mutants of ERp57, we demonstrate the second active site targets a platelet surface substrate to potentiate platelet aggregation. Binding of Alexa 488−labeled ERp57 to thrombin-activated and Mn2+-treated platelets lacking β3 was decreased substantially, suggesting a direct interaction of ERp57 with αIIbβ3. Surface expression of ERp57 protein and activity in human platelets increased with platelet activation, with protein expression occurring in a physiologically relevant time frame. In conclusion, platelet-derived ERp57 directly interacts with αIIbβ3 during activation of this receptor and is required for incorporation of platelets into a growing thrombus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call