Abstract

Metastasis is the major cause of death from cancer, yet the optimal strategy against it remains uncertain. The pathogenesis of hematogenous metastasis is dynamic and consists of the following steps: 1) detachment of tumor cells from the primary site, 2) invasion into the host’s blood vessels, 3) migration in the host’s blood stream, 4) transport along the circulation, 5) arrest in or adhesion to the capillary in a distant organ, 6) extravasation, and 7) proliferation within the foreign tissues. A key to successful hematogenous metastasis is tumor survival in the bloodstream because most circulating tumor cells are rapidly destroyed by the shear forces or are attacked by the immune system. Less than 0.01% of these cells result in metastasis. Tumor cell–induced platelet aggregation has been reported to facilitate hematogenous metastasis by increasing the arrest of tumor cell emboli in the microcirculation. Platelet aggregation is also believed to protect tumor cells from immunological assault in the circulation. We have identified Aggrus as a platelet–aggregating factor expressed on a number of human cancers. Because hematogenous metastasis is reduced when neutralizing antibodies or eliminating carbohydrates attenuates Aggrus function, Aggrus’s main contribution to hematogenous metastasis of Aggrus–expressing cells, then, is by promoting platelet aggregation. Aggrus could serve as an ideal target for drug development to block metastasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call