Abstract

PAF is a potent lipid mediator involved in several manifestations of acute inflammation, including leukocyte influx, leukocyte interaction with endothelium, and production of inflammatory cytokines. The present study evaluated the relevance of PAFR for the pathogenesis of acute GVHD using a model of adoptive transfer of splenocytes from WT or PAFR(-/-) C57BL/6J to B6D2F1 mice. Mice, which received PAFR(-/-) splenocytes or treatment with the PAFR antagonist, showed reduced clinical signs of disease and no mortality. In GVHD mice receiving PAFR(-/-) splenocytes, there was deceased bacterial translocation and tissue injury. Furthermore, production of proinflammatory cytokines and chemokines (TNF-α, IFN-γ, CCL2, CCL3, and CCL5) and accumulation of CD8(+) cells in intestine and liver were reduced in mice transplanted with the PAFR(-/-) splenocyte. Mechanistically, an absence or pharmacological blockade of PAFR was associated with decreased rolling and adhesion of leukocytes to the mesenteric microcirculation, as assessed by intravital microscopy. Despite decreased GVHD, there was maintained GVL activity when PAFR(-/-) leukocytes were transferred into WT mice. In conclusion, PAFR on donor leukocytes plays a critical role in GVHD by mediating leukocyte influx and cytokine production in target tissues. PAFR antagonist may potentially be useful in the treatment of GVHD in bone marrow-transplanted patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.