Abstract

Stroke is one of the most frequent causes of death and disability worldwide leading to a significant clinical and socioeconomic burden. Although different mechanisms are involved in the pathogenesis of stroke, inflammatory response occurs after ischemia and contributes to the expansion of brain injury. Platelet-activating factor receptor (PAF) plays crucial roles in both physiological and pathological conditions in the brain. PAF receptor (PAFR) may be expressed on cellular and nuclear membranes of various cell types, especially leukocytes, platelets, endothelial cells, neuronal cells and microglia. Herein, using mice lacking the PAFR receptor (PAFR(-/-)), we investigate a potential role for this receptor during experimental transient global cerebral ischemia and reperfusion (BCCAo). In PAFR deficiency, we observed a significant improvement in the neurological deficits, which were associated with a reduction of brain infarcted area as evaluated by triphenyltetrazolium chloride (TTC). Moreover, a decrease in the percentage of necrotic cavities areas and in the frequency of ischemic neurons was also found by employing histometric analysis. In addition, in PAFR(-/-) mice there was prevention of caspase-3 activation and decreased vascular permeability and brain edema. Decreased brain levels of the cytokines tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta) and the chemokine (C-X-C motif) ligand 1 (CXCL1) by ELISA were also detected in PAFR(-/-) BCCAo animals. Taken together, our results suggest that PAFR activation might be crucial for the global brain ischemia and reperfusion injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call