Abstract

Platelet activating factor (PAF; C16), 1-O-Hexadecyl-2-acetyl-sn-glycero-3-phosphorylcholine) stimulated the production of active oxygen species by human monocyte-derived macrophages in culture. An optimal response was observed at a concentration of 13 microM PAF with half-maximal stimulation at 5 microM. The generation of superoxide ion (O2-) and hydrogen peroxide (H2O2) in response to PAF was inhibited specifically by a PAF-antagonist (1-O-Hexadecyl-2-acetyl-sn-glycero-3-phospho (N,N,N,-trimethyl) hexanolamine; such generation varied with the degree of maturation of cultured monocytes into macrophages. Production of active oxygen species increased progressively to reach a maximal level between days 4 to 6 of culture and remained maximal to day 12, after which it decreased progressively. Phorbol 12-myristate-13-acetate (PMA) and opsonized zymosan also stimulated generation of O2- and H2O2. PAF was however distinguished by its potent capacity to stimulate O2- and H2O2 production even at late stages of macrophage maturation (18 days), at which time both PMA and zymosan lacked significant effect. These findings suggest that PAF is a factor of potential relevance to the inflammatory role of the macrophage in atherogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.