Abstract

Oligomerization of band 3 protein has been recently indicated as an early event in senescent or damaged red cell membrane followed by specific deposition of anti-band 3 antibodies and binding of complement C3 fragments. The band 3-anti-band 3-C3b complex is recognized by homologous monocytes, and phagocytosis ensues. This study shows that recognition of the anti-band 3-C3b complex by the monocyte C3b receptor type one (CR1) plays a crucial role in the process of removal of damaged red cells. Indeed, blocking of monocyte CR1 with an anti-CR1 monoclonal antibody abrogated phagocytosis of diamide-treated red cells. Platelet-activating factor (PAF) is a phospholipid mediator involved in inflammatory processes. Nanomolar (R)-PAF enhanced the CR1-dependent phagocytosis of diamide-treated human red cell and of sheep red cells coated with C3b, induced the fast translocation of protein kinase C to monocyte membrane compartment, and stimulated the phosphorylation of monocyte CR1. The biologically inert lyso-PAF and the enantiomer (S)-PAF were inactive. PAF receptor antagonists and inhibitors of protein kinase C blocked the enhancement of phagocytosis induced by PAF. Protein kinase C translocation, phosphorylation of CR1, and stimulation of this receptor to an active state capable of mediating phagocytosis represent a novel pathway by which PAF interferes with red cell homeostasis and possibly modulates inflammatory reactions and host mechanisms against infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call