Abstract

Calcium-sensitive fluorescence microscopy and molecular biology analysis have been used to study the effects of platelet-activating factor (PAF) on intracellular calcium [Ca2+]i and IL-6 expression in human microglia. PAF (applied acutely at 100 nM) elicited a biphasic response in [Ca2+]i consisting of an initial rapid increase of [Ca2+]i due to release from internal stores, followed by a sustained influx. The latter phase of the [Ca2+]i increase was blocked by SKF96365, a non-selective store-operated channel (SOC) inhibitor. RT-PCR analysis showed PAF treatment of microglia induced expression of the pro-inflammatory cytokine IL-6 in a time-dependent manner which was blocked in the presence of SKF96365. However, ELISA assay showed no production of IL-6 was elicited at any time point (1–24 h) for microglial exposures to PAF. These findings suggest that PAF stimulation of human microglia induces expression, but not production, of IL-6 and that SOC-mediated [Ca2+]i influx contributes to the enhanced expression of the cytokine.

Highlights

  • IntroductionThey show functional plasticity and can be activated by a diversity of inflammatory stimuli including ones associated with neurodegenerative diseases [9,18]

  • Microglia are resident, immunocompetent cells in the brain

  • Acute application of platelet-activating factor (PAF) to human microglia induces a biphasic change in levels of intracellular Ca2+ ([Ca2+]i) with an initial rapid phase due to intracellular release from endoplasmic reticulum (ER) stores and a secondary phase due to influx through store operated channels (SOC) [15,31]

Read more

Summary

Introduction

They show functional plasticity and can be activated by a diversity of inflammatory stimuli including ones associated with neurodegenerative diseases [9,18]. The functional responses of microglia following activation include proliferation, phagocytosis and secretion. In the latter case microglia can secrete pro- and anti-inflammatory cytokines, chemokines, neurotrophic factors and excitotoxins such as glutamate [20]. Acute application of PAF to human microglia induces a biphasic change in levels of intracellular Ca2+ ([Ca2+]i) with an initial rapid phase due to intracellular release from endoplasmic reticulum (ER) stores and a secondary phase due to influx through store operated channels (SOC) [15,31]. SOC has been shown to (page number not for citation purposes)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.