Abstract
Platelet-activating factor (PAF) is a potent proinflammatory phospholipid with diverse pathological and physiological effects. This bioactive phospholipid mediates processes as diverse as wound healing, physiological inflammation, apoptosis, angiogenesis, reproduction and long-term potentiation. Recent progress has demonstrated the participation of MAP kinase signaling pathways as modulators of the two critical enzymes, phospholipase A2 and acetyltransferase, involved in the remodeling pathway of PAF biosynthesis. The unregulated production of structural analogs of PAF by non-specific oxidative reactions has expanded this superfamily of signaling molecules to include “PAF-like” lipids whose mode of action is identical to that of authentic PAF. The action of members of this family is mediated by the PAF receptor, a G protein-coupled membrane-spanning molecule that can engage multiple signaling pathways in various cell types. Inappropriate activation of this signaling pathway is associated with many diseases in which inflammation is thought to be one of the underlying features. Inactivation of all members of the PAF superfamily occurs by a unique class of enzymes, the PAF acetylhydrolases, that have been characterized at the molecular level and that terminate signals initiated by both regulated and unregulated PAF production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.