Abstract
Metal films on transparent substrates are widely applied for mask production in lithography, and lasers are frequently used for their patterning. Quality of the patterning is limited by fundamental phenomena taking place close to edges of the laser ablated area. We experimentally and numerically investigated transformations in metal films during their irradiation with the nanosecond laser beam with fluence above the ablation threshold. Ridges of the resolidified metal with non-uniform thickness were always formed on edges of the cleaned area. Instabilities during the ablation process forced the molten metal in the ridges to break up into droplets with the periodicity predicted by the Plateau–Rayleigh instability. The droplets on ridges were starting points for formation of self-organized lines of metal film by irradiation with partially overlapping laser pulses. The initial droplets and later the self-organized parallel lines of chromium metal were heat sinks that cooled down the metal in their close proximity. Temperature modulation along the laser irradiation spot was high enough to initiate the Marangoni effect which resulted in movement of the molten metal from hot to colder areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.