Abstract
Abstract We study/construct (proper and non-proper) Morse functions f on complete Riemannian manifolds X such that the hypersurfaces f(x) = t for all −∞ < t < +∞ have positive mean curvatures at all non-critical points x ∈ X of f. We show, for instance, that if X admits no such (not necessarily proper) function, then it contains a (possibly, singular) complete (possibly, compact) minimal hypersurface of finite volume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.