Abstract
ABSTRACT We describe the anatomical and electrophysiological characteristics of a group of Helix nerve cells, styled P cells, that generate long-lasting depolarizations in response to repeated stimulations at low frequencies. Four neurones were identified in the perioesophageal ganglia of the snail Helix pomatia. Their structure was determined by intracellular injection of Lucifer Yellow, cobaltlysine or horseradish peroxidase. The soma was found to contain neurosecretory granules. These cells innervated the whole foot muscle and the mantle, but were not involved in muscle movement or locomotion. They may participate in mucus secretion. Upon depolarization they fired Ca2+-dependent spikes; at a critical firing rate (5–6Hz), the spikes were converted into depolarized plateaus (+10 to +20mV) lasting for several seconds. The plateau was Ca2+-dependent and persisted in Na+-free saline. It was sustained by a slowly inactivating Ca2+ current that produced a large intracellular Ca2+ accumulation (monitored with the Ca2+-sensitive dye Arsenazo III). The plateau was restricted to the soma and the proximal axon and may act as a driver potential inducing axon firing and prolonging the release of neurosecretory materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.