Abstract

Membrane-type acoustic metamaterials generally involve a heavy platelet attached to a pretensioned membrane. Their acoustical performance is characterised solely based on the resonant behaviour of the membrane-platelet assembly. However, typical designs may pose manufacturing issues if extended in scale for industrial applications. Examples include the spatial consistency of the platelet(s), the uniformity of the membrane pretension, and the durability of the membrane—not to mention stress relaxation. As large-scale designs are recently gaining interest, it is imperative to address the shortcomings for manufacturability. This study presents a proof-of-concept design using tensionless membranes without any platelets. The results showed that the acoustical performance could be complemented by the coupling effect between two enclosed cavities via an orifice. The orifice diameter could serve as a tuning parameter for broadband or narrowband transmission loss at selected frequencies. Consequently, the proposed design could address the shortcomings of membrane-type acoustic metamaterials and complement their acoustical performance with the additional feature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.