Abstract

Orogeny, the process by which the earth's prominent mountain ranges are constructed, is herein defined as a collective term for convergent margin processes. The recognition that strains and displacements of very considerable magnitude occur along all of the three dimensions within an orogenic belt has grown gradually during the last two centuries. Investigation of orogenic belts along cross-sections reveals that there are a large number of types of orogenic belts. These are divided into four main orders ( transpressional, subduction-controlled, obduction-controlled, and collision-controlled) consisting of two superfamilies, eight families, and twenty genera. Cross-sectional studies of orogenic belts show that the cross-sectional area during orogeny is not conserved. Similarly, map-view studies of orogenic belts reveal that an absolute minimum of 60% (by length) of them display significant strike-slip motion along their trend which leads also to a non-conservation of the cross-sectional area during orogeny. Thus, rigorous line and area balancing across orogenic belts now is not possible. Large orogenic belts are commonly made up of tectonic collages of microcontinents, island arcs, and accretionary complexes, generally disrupted to form smaller, fault-bounded tectonic entities of diverse sorts. The recently developed “terrane analysis” was developed to aid the study of these but it resembles the early concepts of Alpine nappes and is found to be a retrogressive step in tectonic research mainly because of its disclaim of most genetic connotations. The temporal aspects of orogeny have been debated for over 200 years in terms of continuous vs. world-wide, synchronously episodic orogeny. Plate tectonics has provided a rigorous rationale and something approaching a consensus for continuous orogeny. I conclude that there are as yet no shortcuts to establishing the kinematics of continental deformation except by the traditional methods of field geology aided by relevant geophysical methods. Plate tectonics has given us a new framework in which we can investigate orogeny, but it has not made the job of orogenic geologists any easier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.