Abstract

The framework of plate tectonics, with active boundaries and stable plates, is the best yet devised for explaining the different types and styles of magmatic activity. The dynamic mechanisms of plate tectonics transport rock masses across fusion boundaries in three distinct types of environment and source material, associated with plate boundaries. These are divergent boundaries where mantle peridotite is transported upwards, melting to yield basalt, convergent boundaries where oceanic crust is transported downwards, melting to yield magma of intermediate SiO_2 content, and ocean-continent convergent boundaries where the lower part of continental margins are melted to yield rhyolite magma. Hot spots beneath plates, possibly generated by mantle plumes, yield basaltic magma from mantle and rhyolite magma from overlying continental crust. Subducted H_2O is involved in the generation of andesites and batholiths, and CO_2 from uncertain sources is an influential component for the generation of kimberlite and other low SiO_2, high alkali magmas below continental plates. The chemical differentiation of the earth is accomplished through magmatic processes which are a direct manifestation of convection within the mantle. Igneous petrology is now a study of processes and products firmly rooted in geophysics, and calibrated by laboratory experiments at high pressures and temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.