Abstract
The scaffold for head and neck reconstruction needs mechanical strength to maintain specific forms. Hydroxyapatite (HA) enhances the mechanical strength of hydrogel and is routinely used for cartilage regeneration. However, there is a demand for hydroxyapatite that controls chondrogenic cell behavior. Our aim was to regulate HA morphology through a hydrothermal process using organic acid and enhance chondrocyte proliferation and differentiation using shaped-regulated HA. HA was synthesized from dodecanedioic acid (DD:HA) and oleic acid (OA:HA) by a hydrothermal method and then coated onto glass plates. Surface properties of the samples were compared by various techniques. Surface roughness and contact angles were calculated. Proliferation and differentiation of chondrogenic cells were measured by MTT assays and Alcian Blue staining, respectively, after various incubation periods. The morphological structures of DD:HA and OA:HA were different; however, the crystallinity and chemical structures were similar. Surface roughness and hydrophilic behavior were higher on DD:HA. DD:HA enhanced chondrogenic cell proliferation over time. The differentiation of ATDC5 cells was also increased on the DD:HA surface compared with those in other groups. DD:HA enhanced cell viability to a greater extent than OA:HA did, indicating its excellent potential as an inorganic material compatible with chondrocyte regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.