Abstract

Iron-based anodes for lithium-ion batteries (LIBs) with higher theoretical capacity, natural abundance and cheapness have received considerable attention, but they still suffer from the fast capacity fading. To address this issue, we report a facile synthesis of plate-like carbon-supported Fe3C nanoparticles through chemical blowing/carbonization under calcination. The ultrafine Fe3C nanoparticles are prone to be oxidized when exposing in air; thus, Fe3C/C with mild oxidization and the fully oxidized product of Fe2O3/C are successfully prepared by controlling the oxidization condition. When applied as an anode material in LIB, the Fe3C/C electrode demonstrates excellent cycle stability (826 mAh·g−1 after 120 cycles under 500 mA·g−1) and rate performance (410.6 mAh·g−1 under 2 A·g−1), compared with the Fe2O3/C counterpart. The enhanced electrochemical performance can be ascribed to the synergetic effect of the Fe3C with mild oxidation and the unique hierarchical structure of plate-like carbon decorated with Fe3C catalyst. More importantly, this work may offer new approaches to synthesize other transition metal (e.g., Co, Ni)-based anode material by replacing the precursor ingredient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call