Abstract

Impulse responses of vibrating plates are classically measured on a fine spatial grid satisfying the Shannon–Nyquist spatial sampling criterion, and interpolated between measurement points. For homogeneous and isotropic plates, this study proposed a more efficient sampling and interpolation process, inspired by the recent paradigm of compressed sensing. Remarkably, this method can accommodate any star-convex shape and unspecified boundary conditions. Here, impulse responses are first decomposed as sums of damped sinusoids, using the Simultaneous Orthogonal Matching Pursuit algorithm. Finally, modes are interpolated using a plane wave decomposition. As a beneficial side effect, these algorithms can also be used to obtain the dispersion curve of the plate with a limited number of measurements. Experimental results are given for three different plates of different shapes and boundary conditions, and compared to classical Shannon interpolation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call