Abstract
Superhydrophobic surfaces submerged under water appear shiny due to total internal reflection of light from a thin layer of air (plastron) trapped in their surface texture. This entrapped air is advantageous for frictional drag reduction in various applications ranging from microfluidic channels to marine vessels. However, these aerophilic textures are prone to impregnation by water due to turbulent pressure fluctuations from external flows and dissolution of the trapped gas into the water. We demonstrate a novel chemical method to replenish the plastron in situ by using the decomposition reaction of hydrogen peroxide on superhydrophobic surfaces prepared with a catalytic coating. We also provide a thermodynamic framework for designing superhydrophobic surfaces with optimal texture and chemistry for underwater plastron regeneration. We finally demonstrate the practical utility of this method by fabricating periodic microtextures on aluminum surfaces that incorporate a cheap catalyst, manganese dioxide. We perform drag-reduction experiments under turbulent flow conditions in a Taylor-Couette cell (TC cell), which show that more than half of the drag increase ensuing from plastron collapse can be recovered spontaneously by injection of dilute H2O2 into the TC cell. Thus, we present a low-cost, scalable method to enable in situ plastron regeneration on large surfaces for marine applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.