Abstract

Plastomes of Fabaceae show both significant structural and size variation; however, most published plastomes are from subfamily Papilionoideae and only a few are from the other two subfamilies. In order to address the plastome structural and size variation of subfamily Mimosoideae, we integrated 11 newly sequenced plastomes from representing genera with three previously published ones. Each mimosoid plastome presented a typical quadripartite structure and contained 111 unique genes. Their inverted repeats (IRs) experienced multiple expansion/contraction; a ca. 13-kb IR expansion into small single copy (SSC) was detected in plastomes of a clade formed by tribe Ingeae and Acacia sensu stricto (s.s.), and a ca. 1.7-kb IR expansion into and a ca. 1.9-kb contraction out of large single copy (LSC) were found in Pithecellobium flexicaule and Acacia dealbata, respectively. Linear regression analysis showed decreased synonymous substitution rates of genes relocating from SSC into IR. A loss of both introns of clpP occurred in A. dealbata and Faidherbia albida, and a duplicated clpP copy was detected in A. dealbata. Furthermore, a 421-bp inversion that containing rps18 was found in A. dealbata. The size of mimosoid plastomes was found significantly affected by a IR-SC boundary shift, and also associated with repeat content. Plastome coding and noncoding regions with variable sequence divergence may supply valuable markers for molecular evolutionary and phylogenetic studies at different taxonomic levels. Plastid phylogenomics well resolved relationships among sampled mimosoid species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.