Abstract

BackgroundPlastome-scale data have been prevalent in reconstructing the plant Tree of Life. However, phylogenomic studies currently based on plastomes rely primarily on maximum likelihood inference of concatenated alignments of plastid genes, and thus phylogenetic discordance produced by individual plastid genes has generally been ignored. Moreover, structural and functional characteristics of plastomes indicate that plastid genes may not evolve as a single locus and are experiencing different evolutionary forces, yet the genetic characteristics of plastid genes within a lineage remain poorly studied.ResultsWe sequenced and annotated 10 plastome sequences of Gentianeae. Phylogenomic analyses yielded robust relationships among genera within Gentianeae. We detected great variation of gene tree topologies and revealed that more than half of the genes, including one (atpB) of the three widely used plastid markers (rbcL, atpB and matK) in phylogenetic inference of Gentianeae, are likely contributing to phylogenetic ambiguity of Gentianeae. Estimation of nucleotide substitution rates showed extensive rate heterogeneity among different plastid genes and among different functional groups of genes. Comparative analysis suggested that the ribosomal protein (RPL and RPS) genes and the RNA polymerase (RPO) genes have higher substitution rates and genetic variations among plastid genes in Gentianeae. Our study revealed that just one (matK) of the three (matK, ndhB and rbcL) widely used markers show high phylogenetic informativeness (PI) value. Due to the high PI and lowest gene-tree discordance, rpoC2 is advocated as a promising plastid DNA barcode for taxonomic studies of Gentianeae. Furthermore, our analyses revealed a positive correlation of evolutionary rates with genetic variation of plastid genes, but a negative correlation with gene-tree discordance under purifying selection.ConclusionsOverall, our results demonstrate the heterogeneity of nucleotide substitution rates and genetic characteristics among plastid genes providing new insights into plastome evolution, while highlighting the necessity of considering gene-tree discordance into phylogenomic studies based on plastome-scale data.

Highlights

  • Plastome-scale data have been prevalent in reconstructing the plant Tree of Life

  • Overall, our results demonstrate the heterogeneity of nucleotide substitution rates and genetic characteristics among plastid genes providing new insights into plastome evolution, while highlighting the necessity of considering gene-tree discordance into phylogenomic studies based on plastome-scale data

  • Plastomes have been canonically regarded as a linked single locus due to its uniparental inheritance and lack of sexual recombination [4, 5, 15], empirical studies on the structural and functional characteristics of plastomes indicate that plastid genes may not evolve as a single locus and might experience divergent evolutionary forces [16,17,18]

Read more

Summary

Introduction

Plastome-scale data have been prevalent in reconstructing the plant Tree of Life. Phylogenomic studies currently based on plastomes rely primarily on maximum likelihood inference of concatenated alignments of plastid genes, and phylogenetic discordance produced by individual plastid genes has generally been ignored. Structural and functional characteristics of plastomes indicate that plastid genes may not evolve as a single locus and are experiencing different evolutionary forces, yet the genetic characteristics of plastid genes within a lineage remain poorly studied. Despite evolving at lower rates than the nucleus [19], rates of nucleotide substitution in the plastome have been found to vary across angiosperm lineages, as well between inverted repeat and single copy regions and among different functional gene groups Phylogenomic studies suggest that a combination of concatenated and coalescent methods can produce accurate phylogenies and benefit the investigation into the incongruence between gene trees and species trees [18, 26]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call