Abstract

The transition from an engulfed autonomous unicellular photosynthetic bacterium to a semiautonomous endosymbiont plastid was accompanied by the transfer of genetic material from the endosymbiont to the nuclear genome of the host, followed by the establishment of plastid-to-nucleus (retrograde) signaling. The retrograde coordinated activities of the two subcellular genomes ensure chloroplast biogenesis and function as the photosynthetic hub and sensing and signaling center that tailors growth-regulating and adaptive processes. This review specifically focuses on the current knowledge of selected stress-induced retrograde signals, genomes uncoupled 1 (GUN1), methylerythritol cyclodiphosphate (MEcPP), apocarotenoid and β-cyclocitral, and 3'-phosphoadenosine 5'-phosphate (PAP), which evolved to establish the photoautotrophic lifestyle and are instrumental in the integration of light and hormonal signaling networks to ultimately fashion adaptive responses in an ever-changing environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.