Abstract

Tomato plastid transformants were obtained using two vectors containing cloned plastid DNA of either Nicotiana tabacum or Solanum nigrum and including point mutations conferring resistance to spectinomycin and streptomycin. Transformants were recovered after PEG-mediated direct DNA uptake into protoplasts, followed by selection on spectinomycin-containing medium. Sixteen lines contained the point mutation, as confirmed by mapping restriction enzyme sites. One line obtained with each vector was analysed in more detail, in comparison with a spontaneous spectinomycin-resistant mutant. Integration of the cloned Solanum or Nicotiana plastid DNA, by multiple recombination events, into the tomato plastome was confirmed by sequence analysis of the targeted region of plastid DNA in the inverted repeat region. Maternal inheritance of spectinomycin and streptomycin resistances or sensitivity in seedlings also confirmed the transplastomic status of the two transformants. The results demonstrate the efficacy in tomato of a selection strategy which avoids the integration of a dominant bacterial antibiotic resistance gene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.