Abstract

A plastid-localized terminal oxidase, PTox, was first described due to its role in chloroplast development, with plants lacking PTox producing white sectors on their leaves. This phenotype is explained as being due to PTox playing a role in carotenoid biosynthesis, as a cofactor of phytoene desaturase. Co-occurrence of PTox with a chloroplast-localized NADPH dehydrogenase (NDH) has suggested the possibility of a functional respiratory pathway in plastids. Evidence has also been found that, in certain stress-tolerant plant species, PTox can act as an electron acceptor from PSII, making it a candidate for engineering stress-tolerant crops. However, attempts to induce such a pathway via overexpression of the PTox protein have failed to date. Here we review the current understanding of PTox function in higher plants and discuss possible barriers to inducing PTox activity to improve stress tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.