Abstract

Plastid transformation has become an attractive tool in biotechnology. Because of the prokaryotic nature of the plastid's gene expression machinery, expression elements (promoters and untranslated regions) that trigger high-level foreign protein accumulation in plastids usually also confer high expression in bacterial cloning hosts. This can cause problems, for example, when production of antimicrobial compounds is attempted. Their bactericidal activity can make the cloning of the corresponding genes in plastid transformation vectors impossible. Here, we report a general solution to this problem. We have designed a strategy (referred to as toxin shuttle) that allows the expression in plastids of proteins that are toxic to Escherichia coli. The strategy is based on blocking transcription in E. coli by bacterial transcription terminators upstream of the gene of interest, which subsequently are excised in planta by site-specific recombination. We demonstrate the applicability of the strategy by the high-level expression in plastids (to up to 30% of the plant's total soluble protein) of 2 phage-derived protein antibiotics that are toxic to E. coli. We also show that the plastid-produced antibiotics efficiently kill pathogenic strains of Streptococcus pneumoniae, the causative agent of pneumonia, thus providing a promising strategy for the production of next-generation antibiotics in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.