Abstract

Chloroplast genomes, as an essential source of phylogenetic information, are increasingly utilized in the evolutionary study of angiosperms. Gnaphalieae is a medium-sized tribe of the sunflower family of Asteraceae, with about 2,100 species in 178 genera distributed in temperate habitats worldwide. There has been considerable progress in our understanding of their phylogenetic evolution using both nuclear and chloroplast sequences, but no focus on chloroplast genomic data. In this study, we performed sequencing, assembly, and annotation of 16 representative chloroplast genomes from all the major lineages of Gnaphalieae. Our results showed that the plastomes exhibited a typical circular tetrad structure with similar genomic structure gene content. But there were differences in genome size, SSRs, and codon usage within the tribe. Phylogenetic analysis revealed Relhania clade is the earliest diverged lineages with the Lasiopogon clade and the Gnaphalium s.s. clade diverged subsequently. The core group includes FLAG clade sister to the HAP and Australasian group. Compared with the outgroup species, chloroplast genome size of the FLAG clade is much reduced whereas those of Australasian, HAP, Gnaphalium s.s., Lasiopogon and Relhania clades are relatively expanded. Insertions and deletions in the intergenic regions associated with repetitive sequence variations are supposed to be the main factor leading to length variations in the chloroplast genomes of Gnaphalieae. The comparative analyses of chloroplast genomes would provide useful implications into understanding the taxonomic and evolutionary history of Gnaphalieae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call