Abstract

In this study, we, for the first time, developed a plasticized poly(vinyl chloride) (PVC)-based two-dimensional photonic crystal (2D-PhC) optical sensor using nanoimprint lithography (NIL), which can perform highly sensitive, fast, and selective ion sensing based on ion extraction. Concerning the principle of response, present plasticized PVC-based PhC works as a waveguide and a grating. Incident light was guided in the bulk of plasticized PVC and, then, guided light of a specific wavelength was diffracted by a periodic nanostructure. The guided and diffracted light intensity changes of PVC-based PhCs possessing various thicknesses were monitored at 580 nm; then, we found that the 0.35 μm-thick PhC film exhibited the highest diffraction intensity. For the ion-sensing application, potassium-selective sensing elements involving potassium ionophore and lipophilic dye were dissolved in a plasticized PVC-based PhC, and the K(+)-selective response was successfully observed by monitoring the diffracted peak intensity change. The present 2D-PhC optical sensor exhibited a fast response within 5 s (95% response time) due to the use of thin film, and sensitivity was 20 times higher than that of a PVC plane-film optical sensor, due to efficient collection of diffracted light by employing a periodic nanostructure of the photonic crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.