Abstract

In this work, plasticized proton-conducting polymer blend electrolytes based on poly (vinyl alcohol): chitosan were synthesized, characterized, and utilized in an electric double-layer capacitor (EDLC). A structural study was performed using X-ray diffraction. The scarification and decrease of intensity of the crystalline peak were detected upon the addition of glycerol plasticizer (GP). The morphological appearance of the plasticized blend electrolyte films was examined through scanning electron microscopy, in which the role of GP on ion dissociation was indicated to be important. Electrochemical impedance spectroscopy was performed to estimate the conductivity of the films. Before the EDLC application, other electrochemical techniques, such as transference number measurement (TNM), linear sweep voltammetry (LSV), and cyclic voltammetry (CV), were carried out. To evaluate the performance of the EDLC, the charge–discharge profile was then examined. The EDLC has been cycled 250 times at a current density of 0.75 mA cm−2. The specific capacitance (Cspe) of the EDLC, which is known as an essential parameter, was found to be constant after the first cycle. The reduction in Cspe value was correlated with the increase of equivalent series resistance. Finally, the manners of energy (E) and power (P) densities as a function of the number of cycles were studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call