Abstract
Telomere length has been implicated in the organismal response to stress, but the underlying mechanisms are unknown. Here we examine the impact of telomere length changes on the responses to three contrasting abiotic environments in Arabidopsis, and measure 32 fitness, developmental, physiological and leaf-level anatomical traits. We report that telomere length in wild-type and short-telomere mutants is resistant to abiotic stress, while the elongated telomeres in ku70 mutants are more plastic. We detected significant pleiotropic effects of telomere length on flowering time and key leaf physiological and anatomical traits. Furthermore, our data reveal a significant genotype by environment (G × E) interaction for reproductive fitness, with the benefits and costs to performance depending on the growth conditions. These results imply that life-history trade-offs between flowering time and reproductive fitness are impacted by telomere length variation. We postulate that telomere length in plants is subject to natural selection imposed by different environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.