Abstract
The role of the hippocampus in the representation of 'place' has been attributed to the place cells, whose spatially localised firing suggests their participation in forming a cognitive map of the environment. That this map is necessary for spatial memory formation is indicated by the propensity of almost all navigational tasks to be disrupted by hippocampal damage. The hippocampus has also long been implicated in the formation of episodic memories, and the unusually plastic nature of hippocampal synapses testifies to its probable mnemonic role. Arguably, the place cell representation should, if it is to support spatial learning, be modifiable according to known principles of synaptic reorganization. The present article reviews evidence that the place cell representation is indeed plastic, and that its plasticity depends on the same neurobiological mechanisms known to underlie experimentally induced synaptic plasticity. Inferences are drawn regarding the architecture of the spatial representation and the principles by which it is modified. Spatial learning is promising to be the first kind of memory which is completely understood at all levels, from molecular through circuitry to behaviour and beyond.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.