Abstract

Temperature is an important environmental factor influencing the life-history traits of ectotherms. This study investigated the effects of larval-rearing temperature (21, 23, 25, and 27 °C) on the life-history traits and adult fitness of the fall webworm, Hyphantria cunea, an economically important invasive pest of China. With the increase in temperature during the larval stage, the larval developmental duration was significantly shortened, and the body mass was significantly increased, as was that of the body mass and size of pupae. The carbohydrate and lipid content of pupae significantly decreased with increasing larval-rearing temperature, whereas the protein content significantly increased. Adult body size and egg production increased significantly with increasing larval-rearing temperature, whereas there was no significant difference in egg diameter. These results indicate that H. cunea demonstrates life-history traits plasticity. In addition, the increase in fecundity would maintain a stable population size of H. cunea under higher temperatures. Such characteristics could enable H. cunea to spread to the more southern, warmer areas of China, posing an increased risk to the forestry industry in these regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call