Abstract

Many workers have demonstrated a genetic basis for variation in inflorescence traits, but this variation can also have an environmental component. Because flowering can incur significant water costs, I estimated plasticity of inflorescence traits of three populations of Lobelia siphilitica in response to drought. I manipulated soil water availability in the greenhouse and measured seven inflorescence traits. Under drought conditions, plants from one population flowered later and produced fewer flowers with shorter corollas and narrower landing pads. In contrast, the height of the flowering stalk decreased in response to drought in all three populations. Consequently, pollinator-mediated natural selection on these plastic traits may depend on soil water availability. Plastic responses differed between genotypes only for the height of the flowering stalk and the length of the corolla tube and only in one or two populations. This suggests that genotype × environment interactions would not limit the evolution of inflorescence traits in L. siphilitica. The strength and sign of phenotypic correlations among inflorescence traits did not respond plastically to drought, suggesting that indirect selection on inflorescence traits of L. siphilitica will not vary strongly with water availability. My results suggest that plasticity of inflorescence traits may influence their evolution, but the effects are population- and trait-specific.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call