Abstract

ABSTRACTA generic model of bulk crystal plasticity with stochastic evolution of the local microstructure is formulated. The evolution of local fluctuations of internal stress and plastic strain, as well as the cross correlation between these variables, is investigated for different loading modes (stress control vs. displacement control) as a function of the coarse graining scale, and the spatial structure of the respective correlation functions is determined. The investigations demonstrate that, after an initial transient characterized by uncorrelated initiation of plasticity in different sample locations, nontrivial long range correlations emerge both within the strain pattern and between the internal stress and plastic strain patterns. The internal stresses, on the other hand, remain short range correlated throughout. Implications of our findings for larger-scale plasticity models are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.