Abstract

This paper presents a theoretical and computational framework for the analysis of structures that are subjected to inelastic static or dynamic overloads. Current practice in structural engineering assumes elastic material response for the analysis but applies the resulting solutions to design methods that are based on elastoplastic or perfectly plastic material response. This approach generates inaccuracies which, depending on the amount of overload, can be excessive because force distributions within statically indeterminate structures depend on the relative stiffnesses of the individual structural elements (i.e., beams and columns). The relative element stiffnesses within a structure change continuously under inelastic loading and can be significantly different from their initial elastic values. For this purpose, a new plasticity model that combines the nonlinear material response and the geometric characteristics of a structural element is developed. The model provides the computational efficiency and ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.